Skip to content

CMake

How to compile C++ in 2025. Bazel or CMake?

caption

Today, we’re examining two modern build systems for C++: CMake, the industry favorite, and Bazel, a powerful alternative. While CMake is often the default choice, I believe that approach warrants a bit more scrutiny—after all, we’re focusing on modern tools here (yep, not counting Make, right?). To explore this, I’ve created a practical demo project showcasing how both systems manage a real-world scenario.

Using the maelstrom-challenges project as a starting point, I’ve extracted a C++ library called maelstrom-node. This library has been set up to work seamlessly with both Bazel and CMake, giving us a hands-on comparison of their approaches, strengths, and quirks.

The Project Structure

Here’s what the final directory layout for maelstrom-node looks like:

Returning to Rust: A Journey Through Tooling, Performance

When I started tackling the Maelstrom challenges, my initial thought was to use C++. It’s a language I know inside out, and its performance is hard to beat. However, as I contemplated setting up the project, I realized I couldn’t justify fighting with the C++ pipeline for free. Crafting a proper CMake or Bazel configuration might be worthwhile for large-scale projects or when compensated, but for personal experiments? It’s an unnecessary headache.

Why Go is My Default Choice

For most non-performance critical scenarios, Go is my default, no-brainer choice. It has a clean build system, excellent tooling, and a developer experience that doesn’t make me dread the setup process. Go’s simplicity allows me (and any level team) to focus on solving the problem rather than wrestling with the environment. Yet, this time, I decided to take a different path.