FFI и Rust

Продолжаю бороться с типами. Есть надежда, что FFI (Foreign Function Interface) – это самая сложная и последняя часть, где система типов в Rust будет доставлять серьезные неудобства. Пока что, главное выстраданное правило гласит: если тебе Rust не дает написать какую-то конструкцию, то эта конструкция зло. То есть не надо пытаться обмануть систему типов и писать “как привык в C++”. Довольно простой, если верить документации на сайте Rust, интерфейс FFI оказался с заковырками. Даже пришлось создать маленькую песочницу для игр именно с FFI.

Наверное самая поразившая меня фича в этой области Rust-а – преобразование типов, особенно при работе с массивами. Простейший пример (type_of из предыдущего поста):

let array: &[u8] = unsafe { mem::transmute("Rust") };       // (1)
println!("type: {}, ptr: 0x{:x}, len {}",
    type_of(&array), array.as_ptr() as u64, array.len());

let new_array: &[u32] = unsafe { mem::transmute(array) };   // (2)
println!("type: {}, ptr: 0x{:x}, len {}",
    type_of(&new_array), new_array.as_ptr() as u64, new_array.len());

Классический вопрос из разряда “а что оно напечатает?”. Кажется что всё невероятно просто, создаем массив 1 из uchar, размер которого будет 4. Конвертируем 2 массив uchar в массив uint32 с размером 1. В итоге лично я ожидал чего-то такого:

type: &'static [u8], ptr: 0x1037a1414, len 4
type: &'static [u32], ptr: 0x1037a1414, len 4

Но был сильно удивлен. Дело в том, что по мнению компилятора Rust второй массив хоть и является массивом uint32, но по прежнему содержит 4 элемента, т.е. конверсия делается в лоб и только для типа, но не размера и физический размер “вырос” в 4 раза без перераспределения памяти.

При этом вроде как правильное решение будет выглядеть следующим образом:

let new_array_2 = unsafe {
    slice::from_raw_parts_mut(array.as_ptr() as *mut u32,
        array.len() / mem::size_of::<u32>())
};
println!("type: {}, ptr: 0x{:x}, len {}",
    type_of(new_array_2), new_array_2.as_ptr() as u64, new_array_2.len());

Хотя меня гложут сомнения на тему того, что я правильно всё делаю, так как вывести новый размер массива вроде очень просто из чего следует что я вызвал какую-то неправильную функцию, или правильную, но криво…

Мелкие пакости: время жизни переменной в Rust

Допустим, хочется получить текстовое представление типа переменной в Rust. При этом в язык входит такая замечательная функция как type_name() -> &’static str принимающая тип выдающая его тектовое обозначение. Само собой, хочет применить его не только для типа (название типа не так уж и полезно в диагностических целях), а к переменной. Логичным для C++ разработчика выглядит приблизительно следующее решение:

fn type_of<'a, T>(_: T) -> &'a str {
    unsafe { std::intrinsics::type_name::<T>() }
}

Но тут возникнет довольно занятная проблема, так как переменная становится недоступной после (с некоторыми ньюансами в зависимости от типа) получения её имени:

error: use of moved value: `*variable_name` [E0382]

После небольшой фрустрации понимаешь, что в принципе это ж фича и компилятор не должен догадываться о моих намерениях только лишь получить тип, а не реально использовать значение. Но делать что-то нужно. Единственным подходящим решением оказывается передача по ссылке (ссылке в понимании Rust, а не C++), что ожидаемо, но немного странно для C++ разработчика.

fn type_of<'a, T>(_: &T) -> &'a str {
    unsafe { std::intrinsics::type_name::<T>() }
}

Вообще, все эти мелкие пакости модели памяти постоянно преследуют при программировании на Rust. Никак не могу понять, это реально зло или я просто еще не привык и просто мыслю моделью памяти C++?

Как бороться с динамической типизацией?

Я довольно часто писал на Python какие-то вспомогательные вещи, иногда сравнительно крупные, но почти всегда не знание типа объекта с которым работаешь было не критичным. Плюс возможность разрабатывать в IPython сильно облегчала жизнь. И так было до тех пор, пока я не решил плотно использовать Twisted. И оказалось что в IPython не попишешь нормально, а занание типов параметров в функциях обратного вызова и классов из обширного становится необходимостью.

И вот тут то я оказался в неком тупичке. Есть большое количество разнообразных классов со сложными интерфейсами. Перепробованные IDE (Eclipse, PyCharm и даже Emacs) не позволяют воспользоваться автодополнением в незнакомых им классах, что логично. В результате, весь код начинает выглядеть как пример ниже.

def _call_later(self, request):
"""
тут какое-то описание функции
@param request: тут какое-то описание параметра
@type request: Request (1)
"""

Да, безусловно, указывать 1 для каждой из создаваемых функций типы передаваемых параметров это решение, только оно выглядит как откровенный костыль. В итоге, у меня создается ощущение, что я как-то не верно использую этот замечательный язык… Что не так? Как с этим жить? Наиболее подходящим вариантом выглядит то, что все помнят параметры у API наизусть, я же вполне могу писать на C++ с подстановкой параметров исключительно из открытых файлов.

Callbacks, closures и модель памяти Rust

Реализуемая Rust модель памяти оставляет свой отпечаток на всем, включая такие вещи как замыкания и функции обратного вызова. Привычные по другим языкам концепции в случае с Rust начинают вести себя иначе и далеко не с первого взгляда очевидно почему такое происходит.

В Rust имеются два вида замыканий: стековые и уникальные и указатели на функции. В некоторых случаях замыкания взаимозаменяемы и совместимы с указатели на функции, в некоторых нет. Поведение данных замыканий идентично поведению стековых данных и данных адресуемых посредствам уникальных указателей. Так как весь этот набор выглядит довольно обширным, то мне кажется что лучше всего разбираться на примерах. Continue reading

Разрушающее сопоставление с образцом

В Rust используется разрушающее сопоставление с образцом, что в купе с моделью памяти Rust, иногда, дает очень занятные эффекты. Для примера возьмем структуру MyStruct и создадим две переменные типа Option в которых будет лежать наша структура, в одном случае 1 в виде стекового объекта, а во втором в виде уникального указателя 2.

struct MyStruct {
    val: int
}
let stack_data = Some(MyStruct{val:42});   // (1)
let own_data = Some(~MyStruct{val:42});    // (2)

Continue reading

Луч поноса авторам HomeBrew

Довольно давно, а если говорить точнее, то уже лет как 5 я использую MacPorts. Порты, конечно, не без багов, но все же они достаточно хорошо спроектированы и удобны в использовании. В них всегда можно найти несколько версий компиляторов и т.д. И тут, внезапно, мне понадобился HomeBrew. Да, я знаю, что писать пакеты для MacPorts трудно, а для HomeBrew легко. Да, я в курсе того, что заставить работать MacPorts через прокси не так уж и просто, а HomeBrew очень легко. Но…

КАКОГО ХЕРА HomeBrew требует что бы пользователь был Admin?! Что за жопорукий дебил это придумал?! Системное приложение ОБЯЗАНО уметь работать через sudo или каким-то иным способом повышать свои права!

Переменные окружения в OSX

Отловил странный то ли глюк, то ли фичу. Изначальная задача следующая: необходимо добавить переменные окружения таким образом, что бы они были доступны всем запускаемым процессам, т.е. не только тем, что были запущены из командной строки, но и UI-приложениям.

Стандартный путь довольно прост: необходимо вписать в файл /etc/launchd.conf новые пути, следующим способом.

setenv PATH /new/path/a:/new/path/b

Собственно, я так делал всегда и все было нормально. Но, внезапно, а может и не очень, к примеру после какого-то обновления, ряд приложений (тот же Eclipse и Wireshark) перестал видеть что-либо за пределами переменных, прописанных в /etc/launchd.conf. В итоге, по мнению этого ряда приложений “исчезло” все, VJM, dir, ls да совсем-совсем все.

Гугла подсказала, что пользовательские переменные, которые должны стать доступны всем, можно добавить еще в пару файлов, например в /private/etc/paths. Формат файла прост: одна линия – один путь.

/new/path/a
/new/path/b

Слегка разочаровался в Scala

Когда-то, довольно давно, я взялся за поиск альтернативы для C++, который во все времена был и, как мне думается на данный момент, будет моим основным рабочим инструментом. Само собой, эта альтернатива мне была нужна не для того, что бы перейти в какую-то иную сферу, а для тех случаев, когда либо хочется написать что-то свое, либо нужно быстро создать какой-то прототип, проверить ту или иную концепцию. В такой ситуации JVM-based язык очень удобен и, по большому счету, безальтернативен, конкуренцию может составить разве что Python со своим простым синтаксисом и безграничным набором библиотек. Continue reading

Задачи в Rust. Подводные камни.

Все написанное в данной заметке актуально для компилятора Rust версии 0.7

Более-менее глубокой информации о задачах в Rust не много, поэтому, для того что бы разобраться в том, как же это работает, приходится экспериментировать “на кошках”. Посидев некоторое время за исходниками Rust, я открыл для себя много нового.
Самое неожиданное: на данный момент планировщиков задач аж два! Один старый, более функциональный, правда, на данный момент находящийся в довольно непотребном состоянии и новый, который еще не дописан. Подобная ситуация приводит к тому, что поведение задач, запущенных при помощи методов TaskBuilder отличаются от поведения задач, запущенных при помощи функций из модуля task.
Ну а после “оптимистичного” введения, небольшой рассказ о планировщиках Rust и том, как с ними работать на данный момент.

Старый планировщик

Если зайти на сайт Rust, то в разделе посвященном модулю Task можно найти информацию о ряде доступных типах планировщиков, заявленное поведение которых расходится с реальным: Continue reading